目前人工智能已经成为了通用型技术,以深度学习为代表的机器学习加速渗透到各行各业,产生了非常丰富的应用。作为引领 AI 技术加速变革的重要法宝,机器学习是一把双刃剑。 一方面,以深度学习为主要技术模型的机器学习可以帮助 AI 摆脱对人为干预和设计的依赖,形成 AI 的自主学习、自我创造以及自动迭代机制,使得 AI 在学习思维上无限接近于人类大脑。 另一方面,机器学习又日益暴露出 AI 在自动化决策(Automated decision-making)中无可回避的难解释性和黑箱性。基于人工神经网络结构的复杂层级,在AI深度学习模型的输入数据和输出结果之间,存在着人们无法洞悉的“黑盒”,即使是专家用户也无法完全理解这些“黑盒”。 因此,可解释AI便应运而生,可解释AI可以分为全局可解释(使公众理解算法模型本身)和局部可解释(使公众理解算法模型的输出结果)。如果不解决这两个问题,不仅影响到用户对 AI 应用的信任,而且也可能会带来算法歧视、算法安全和算法责任等方面的相关问题。 在这样的背景下,可解释 AI 成为 AI 伦理甚至是立法、监管的必选项。从 2017 年的 IEEE 的《人工智能设计的伦理准则》,到 2019 年 4 月欧盟的《可信 AI 伦理指南》,再到 2020 年 11 月美国的《人工智能应用监管指南》,再到中国 2021 年 9 月的《新一代人工智能伦理规范》,以及 2021 年联合国的《人工智能伦理问题建议书》,其中都在强调可解释性和透明性的问题。 我国的《个人信息保护法》、网信办等九部委出台的《关于加强互联网信息服务算法综合治理的指导意见》、以及《互联网信息服务算法推荐管理规定(征求意见稿)》等相关立法也开始对人工智能算法应用的透明度和可解释性提出要求。
可解释AI的行业实践探索
在此背景下,可解释 AI 也成为了各大主流科技公司研究的新兴领域,学术界与产业界等纷纷探索理解 AI 系统行为的方法和工具。目前各主流科技公司对可解释 AI 的探索实践主要有两大路径,路径一是建立“模型说明书”标准,促进算法模型本身的透明度和可理解,第二种路径则是打造可解释性工具,推动构建可解释的 AI 模型(XAI)。 路径一旨在促进模型的透明度,增加相关主体对模型的理解和信任。譬如,谷歌的模型卡片机制(model cards),对模型的输入、输出、模型架构、性能、局限性等进行描述,旨在以简明、易懂的方式让人们看懂并理解算法的运作过程。再如,IBM的AI事实清单机制(AI fact sheets),旨在提供与 AI 模型或服务的创建和部署有关的信息,包括目的、预期用途、训练数据、模型信息、输入和输出、性能指标、偏见、鲁棒性、领域转移、最佳条件、不良条件、解释、联系信息等。 国内互联网行业也开始采取类似做法,促进算法模型的透明度,如 2021 年,美团两次发文阐释其外卖配送算法的相关规则,促进其算法的透明度;同年 8 月,微博也首次公开其热搜的算法规则。这些实践都是从受众的角度出发,增强用户对人工智能系统的理解与信任。腾讯也致力于推动人脸识别、医疗 AI 应用的可解释性,构建负责任、可信的 AI 算法应用。 路径二主要是可解释性工具、可解释模型方面的研究,从技术层面解决可解释性的问题。随着可信 AI 和 AI 监管日益得到重视,行业更加重视可解释 AI 研究,寻求解决 AI 的可解释性问题的技术方案。越来越多的可解释性工具被发布出来,可以对不同的统计机器学习模型和深度学习模型进行解释,包括一般的泛线性模型、集成学习模型、图像识别模型以及自然语言处理模型等。 近年来头部的人工智能公司,包括微软、谷歌等,更是推出了更加强大与丰富的可解释性工具,囊括了诸多可诠释(Interpretable)方法与可解释(Explainable)方法,为实际面临的可解释性问题的解决提供了巨大的帮助。
可解释AI的发展建议
透明性与可解释性,连同公平性评价、安全考虑、人类 AI 协作、责任框架,都是 AI 领域的基本问题。我们需要找到一个平衡的可解释 AI 的路径,来打造可信、负责任 AI,确保科技向善。具体来说,在设计可解释性要求时,需要考虑可解释性要求和其他重要的伦理价值和目的(诸如公平、安全、隐私、网络安全等)之间的平衡。因为可解释性本身不是目的,而是实现其他目的的手段。所以在设计可解释性要求时,首先需要考虑想要实现什么目标,其次需要思考在特定情境下如何更好地匹配这些目标。 第一,立法和监管宜遵循基于风险的分级分类分场景治理思路,在鼓励科技创新、追求科技向善、维护社会公共利益之间找到平衡点。首先,披露 AI 算法模型的源代码是无效的方式,不仅无助于对 AI 算法模型的理解,反倒可能威胁数据隐私、商业秘密以及技术安全;其次,不宜不加区分应用场景与时空场合地要求对所有的算法决策结果进行解释;再次,侧重应用过程中的披露义务;最后,避免强制要求披露用来训练AI模型的数据集,这不仅不具有可操作性,而且容易与版权保护冲突,侵犯用户的数据隐私或违反合同义务。 第二,探索建立适应不同行业与场景的可解释性标准。具体可以从三个方面来着手:一是针对 AI 系统的一些示范性应用场景提供可解释性标准的指南,给行业和企业带来有益参考;二是发布 AI 可解释最佳实践做法案例集、负面做法都是值得尝试的,包括用以提供解释的有效的用户界面,面向专家和审计人员的记录机制(例如详细的性能特征,潜在用途,系统局限性等);三是创建一个说明不同级别的可解释性的图谱,这个图谱可被用来给不同行业与应用场景提供最小可接受的衡量标准。 第三,探索可解释的替代性机制,多举措共同实现可信、负责任 AI。虽然可解释性是完善 AI 技术的最优解之一,但并非所有的AI系统及其决策都可以解释。当 AI 系统过于复杂,导致难以满足可解释性要求,或是导致解释机制失灵、效果不乐观时,就要积极转变规制的思路,探索更多元化、实用化的技术路径。目前在技术上主张的是采取适当的替代性机制,如第三方标记反馈、用户申诉和人工审查、常规监测、审计等,这些替代性机制可以对 AI 算法的决策起到监督和保障作用。 第四,增强算法伦理素养,探索人机协同的智能范式。开发者和使用者是 AI 生态的核心参与者,需要提升他们的算法伦理素养。一方面,加强科技伦理教育,提升 AI 从业人员的算法伦理素养;另一方面,通过教育、新闻报道、揭秘等方式提高公众的算法素养,构建和谐的人机协同关系。 最后,引导、支持行业加强可解释 AI 研究与落地。由于 AI 技术的快速发展迭代,可解释 AI 的工作应主要由企业与行业主导,采取自愿性机制而非强制性认证。因为市场力量(market force)会激励可解释性与可复制性,会驱动可解释 AI 的发展进步。企业为维持自身的市场竞争力,会主动提高其 AI 相关产品服务的可解释程度。长远来看,政府、社会、企业、行业、科研机构、用户等主体需要共同探索科学合理的可解释 AI 落地方案及相关的保障与防护机制,推动科技向善。 在公众号“ 企福云官方”后台回复关键词“可解释AI”获取完整版报告PDF
查看全部 0 条评论